Pages

NASA 2007 science budget

This is old news. The main purpose of this post is to provide historical references for something I'm going to write more about, and to give a general flavor of the controversy over NASA's science budget.

On February 6, 2006 the Bush administration delivered NASA's 2007 budget to Congress – and there were substantial cuts in the science programs. I wrote a little about that here, as part of a general discussion of a variety of NASA problems at the time. (See the section on "NASA's 2007 budget".)

You most likely don't want to plow through all these articles, so I'll just summarize. Some of the science missions that were cut back or eliminated from the budget included probes to Mars and Jupiter's moon Europa, and a telescope to search for Earth-like extrasolar planets (Terrestrial Planet Finder).

Two other missions, which I will write more about, involved advanced astrophysics: the Laser Interferometer Space Antenna to search for gravitational waves and Constellation-X to study black holes.


Tags:
Read More >>

Philosophia Naturalis #3 has been published

And you can find it right now, at geek counterpoint. Don't miss it – it's really good.

Thanks, Lorne, for a fine job.
Read More >>

Interesting visitors - Manatees in the Mississippi River


The Mississippi River is home to many aquatic creatures, the most note-able of which is the catfish. But recently, a manatee was found swimming in the great river in Memphis, Tennessee. No doubt, this fellow was lost. It is normally found in warmer waters, such as the Gulf of Mexico. The sea cow, as it is also called, must have swam up the river from the mouth, near New Orleans, Louisiana. Read more about the discovered manatee, here & here and the attempted, yet failed rescue attempts here & here.
As strange as this may sound, even sharks have found their way far north up the Mississippi River. Some have even been sited in St. Louis, Missouri. Bull sharks are able to survive in marine, or salt water, and freshwater environments. Read here to learn more about Bull sharks and their occasional journeys north.
Read More >>

Inflation and the cosmic microwave background

About three weeks ago I wrote a little about the cosmic microwave background (CMB), and talked about writing more. So here's a little more. The CMB is microwave radiation we can (almost) literally "see" even though it originated only about 350,000 years after the big bang. (I'll explain more in a minute about what "originated" means in this context.)

There are a number of things very wonderful and remarkable about the CMB. Not only is it one of the major pieces of evidence supporting the big bang theory in general, but it also gives us much information about things as diverse as the relative proportions of ordinary matter and dark matter in the universe, the overall curvature of the universe ("flat", "convex", or "concave"), and the ratio of the number of baryons (protons and neutrons) to photons in the universe.

Further, of particular concern here, the CMB provides a means of testing a theory – the theory of cosmic inflation – that describes a much different period of time than that of the CMB itself, a period of time that began only about 10-35 seconds after the big bang itself. The theory of inflation comprises a range of models describing what may have happened at that time. If there is any truth at all to the theory, the CMB can help narrow the range of acceptable models.

I have a couple of older articles on this from back in March/April here and here. These deal with the announcement back then of analysis of data from the Wilkinson Microwave Anisotropy Probe (WMAP) that, among several other things, gave the first reasonable evidence for inflation.

Rather than dive right away into further explanation of that, I'm going to refer you first to this excellent recent article on the subject by Sean Carroll: Reconstructing Inflation.

What's that, you say? It sounds impressive, but you don't quite follow the details? OK, let's step back for a moment and review the basics. The picture below is a graphical representation of the main data obtained from WMAP:



This picture shows slight variations in temperature across the entire sky, at microwave frequencies, where blue represents coolest and red represents warmest. The variations are actually very small: the whole range is ± 200 microKelvins (millionths of a degree K).

Temperature differences correspond directly to differences in matter density – because a gas under higher pressure is warmer and denser than the same gas under lower pressure (the "combined gas law"). So what we see here are minute ripples of higher and lower pressure in the matter of the universe at roughly 350,000 years after the big bang. What has caused these pressure waves? Carroll's article explains

The same basic mechanism works in both cases — quantum fluctuations (due ultimately to Heisenberg’s uncertainty principle) at very small wavelengths are amplified by the process of inflation to macroscopic scales, where they are temporarily frozen-in until the expansion of the universe relaxes sufficiently to allow them to dynamically evolve.

The spots and blotches you see in this picture are shadows on the wall, as it were, of quantum fluctuations that actually occurred 10-35 seconds after the big bang. At first, in a period that lasted perhaps only 10-33 seconds, these fluctuations were inflated at an incredible rate. Thereafter, they continued to expand along with the rest of spacetime itself, until we see them projected on the CMB wall 350,000 years later.

To be more precise, we should note that this metaphorical CMB "wall" did not form at some single precise time. Instead, the CMB itself is a result of most of the hydrogen and helium matter in the early universe making the transition from an ionised plasma to an ordinary gas of neutral atoms, as free electrons were "captured" by the hydrogen and helium ions. Consider, for simplicity, just the hydrogen. It takes 13.6 eV (electron volts) of energy to separate an electron from a hydrogen atom. In the early universe when the typical photon had much more than this energy, atomic hydrogen could not exist for long, as most passing photons could "liberate" the electrons. But when the energy of the typical photon dropped, as the universe expanded, to the equivalent of around 13.6 eV, hydrogen atoms became stable for longer periods of time. This is known as the period of "recombination" (even though prior to this, protons and electrons had never been in a "combined" state). Once there was a lot of atomic hydrogen, photons of the most common energy levels "scattered" from the atomic hydrogen, and the universe was somewhat opaque to those photons.

But as the temperature dropped further, most photons did not have enough energy to liberate electrons from hydrogen atoms. So most photons ceased to scatter from atomic hydrogen, and the universe effectively became transparent again. Although this happened over a relatively short period of time, it was not instantaneous. By the time that most hydrogen was in an unionized state, a typical photon never again scattered off a hydrogen atom. So around any present observer, there is a "surface of last scattering". Assuming what are currently considered the most likely cosmological parameters, this corresponds to a time about 13.3 billion years ago (equivalent to a red shift of about 1100), about 350,000 years after the big bang. This surface of last scattering is what we see today as the CMB. The temperature of the universe at this time of last scattering was about 3000° Kelvin, but due to the subsequent expansion of the universe, the CMB photons now have an energy that peaks around 2.725° K, in the microwave part of the spectrum.

There is another way to represent the WMAP data for the CMB. You've probably seen it in some form. (It's in Carroll's article, if you read that.)



The vertical scale on the left is a measure of the amplitude of temperature fluctuations. The top and bottom scales are measures of angular size. 90°, for instance, is one fourth of the whole sky. The "multipole moment" (l) is an integer that corresponds to an angular measure of 180°/l. So, for instance, the peak on the above graph occurs around l=200, which is slightly less than 1°. For comparison, the angular size of the full moon viewed from earth is about .5°. What the graph is saying, roughly, is that strongest temperature fluctuations (spots in the picture above the graph), if you could see them with your naked eyes, are almost twice the angular size of a full moon. (Astrophysicists use multipole moments, since they are the relevant identifiers of "spherical harmonic" functions that are used to construct a series representation of the function which describes theoretical temperature variations, similar to the way that a Fourier series can represent a function of one real variable.)

The small dots on the graph are WMAP measurements for various values of l. They come with error bars, which are mostly too small to see, because the WMAP measurements were mostly pretty precise. The red line through the measured values is the theoretically predicted values, assuming that the temperature variations are actually the result of quantum fluctuations that occurred in the inflationary period. The locations of the two peaks to the right of the main peak are especially important, and they correspond fairly well to theoretical predictions.

Carroll's article explains how there are actually two kinds of perturbations we might potentially observe in measured quantities: "scalar" and "tensor", reflecting the fact that Einstein's equation describing gravity waves (which result from the inflation-era quantum fluctuations) is a tensor differential equation. Further, all that we can readily measure from the WMAP data are scalar perturbations:

To date, we are quite sure that we have detected the influence of scalar perturbations; they are responsible for most, if not all, of the temperature fluctuations we observe in the Cosmic Microwave Background. We’re still looking for the gravity-wave/tensor perturbations. It may someday be possible to detect them directly as gravitational waves, with an ultra-sensitive dedicated satellite; at the moment, though, that’s still pie-in-the-sky (as it were). More optimistically, the stretching caused by the gravity waves can leave a distinctive imprint on the polarization of the CMB — in particular, in the type of polarization known as the B-modes. These haven’t been detected yet, but we’re trying.

Problem is, even if the tensor modes are there, they are probably quite tiny. Whether or not they are substantial enough to produce observable B-mode polarization in the CMB is a huge question, and one that theorists are presently unable to answer with any confidence.

The WMAP experiment was capable of studying polarization of CMB microwaves only rather crudely. But a new experiment is due for launch very soon (early 2007) in the form of the European Space Agency's Planck mission. Considering that it took several years to analyze WMAP data, we may not have better information right away – but it won't be too long, if everything goes reasonably well.

--------------------------

Further information about CMB:


Wilkinson Microwave Anisotropy Probe
NASA web site of WMAP, containing background information, images, and graphs.
Wayne Hu's Home Page
One of the best collections of CMB information, including an introduction, explanation of the physics, and discussion of CMB polarization.


--------------------------

Tags: , , , , , ,
Read More >>

Dawkins vs. Haggard

Ted Haggard is the evangelical mega-star currently in the news because... well, you know. Everyone knows who Richard Dawkins is, but he's currently in the news because of his new book The God Delusion.

So it's interesting that Dawkins interviewed Haggard not so long ago as part of a documentary on the mad, mad world of hyper-religion. See the YouTube video of it here. Notice how Haggard's lips are twisted into a vicious snarl during the 1-on-1 interview with Dawkins. Guess T. H. was needing a meth fix, or at least a "massage".

On a lighter note, check out the Dawkins interview with Stephen Colbert here.

And then, since this is a science blog, check out Sean Carroll's review of The God Delusion.

Lastly, I might as well mention my own article on Steven Pinker's essay on Dawkins.

Tags: , ,
Read More >>

Why blue-eyed men prefer blue-eyed women - but not vice versa

Most people learn in high school (if they're paying attention) that human eye color is a genetic trait which follows fairly simple rules. The primary gene that controls eye color exists in several forms, called alleles. The protein produced by one of the alleles causes the eyes to be brown, while a variant allele producing a slightly different protein does not. Since the human genome contains two copies of each gene, if even one of these copies is the allele for brown eyes, brown will be the resulting color, regardless of the other allele. Such an allele is said to be "dominant". Another eye color (e. g. blue) will result only if both copies of the gene are non-brown alleles. Such alleles are said to be "recessive".

Children receive one copy of each paired chromosome from each parent. It follows that if one parent has two copies of a dominant gene, every one of their children will receive at least one copy, regardless of what the other parent has. All children of this mother and father will have brown eyes, if even one parent has two brown eye alleles, and even if the other parent has two blue eye alleles.

If both parents have one brown and one blue allele, then for any particular child, there's a 1 in 4 chance of receiving two brown alleles, a 1 in 4 chance of receiving two blue alleles (the only case that will result in blue eyes), and a 2 in 4 chance of receiving one brown and one blue allele (hence brown eyes). If one parent has blue eyes, and the other has both a brown and a blue allele, then the odds are 50/50 for each of their children to have either brown or blue eyes. So if one or both parents have brown eyes, it's possible for them to have blue-eyed children. But when both parents have blue eyes, so all of their alleles are for blue eyes, all of their children will have blue eyes. In that case, if any child has brown eyes, it must be the case that one parent – most likely the male – is not the biological parent. Oops.

So a blue-eyed man has an interesting advantage over men with brown eyes – a very dependable way of knowing that he is not the father of a particular child, provided he mates with a blue-eyed woman. Further, a blue-eyed man who regards blue-eyed women as more attractive than women of other eye colors is more likely to mate with blue-eyed women. And so such a blue-eyed man has a selective advantage over other blue-eyed men who have no such preference (or a preference for brown-eyed women).

This would be advantageous, at least in prehistoric times, if in addition such a man was less inclined to provide for a child without blue eyes – even if there was no conscious recognition that the child could not be his own. Some recent research has indicated that blue-eyed men sometimes actually, if unconsciously, do have a tendency to regard blue-eyed women as more "attractive", and hence (presumably) are more likely to choose them as mates:

Blue Eyes -- A Clue To Paternity
Eighty-eight male and female students were asked to rate facial attractiveness of models on a computer. The pictures were close-ups of young adult faces, unfamiliar to the participants. The eye color of each model was manipulated, so that for each model's face two versions were shown, one with the natural eye color (blue/brown) and another with the other color (brown/blue). The participants' own eye color was noted.

Both blue-eyed and brown-eyed women showed no difference in their preferences for male models of either eye color. Similarly, brown-eyed men showed no preference for either blue-eyed or brown-eyed female models. However, blue-eyed men rated blue-eyed female models as more attractive than brown-eyed models.

Since a mother almost always can be sure a given child is hers (except for rare events like accidental switching of infants), a mechanism that provides a way to recognize that a child isn't her own provides little additional advantage. And so, blue-eyed women do not have an evolutionary advantage from a tendency to regard blue-eyed men as more attractive than others. So they do not, in fact, have that tendency.

If you're looking around for an example of specific, and unexpected, behavior for which evolutionary psychology offers the simplest explanation, this may be a good choice.

Update 8/3/08: There is more recent news on this subject here and here.

Tags: , , , ,
Read More >>

Big Bang Theory Saved

From the title you might think that the theory was in serious peril. But it wasn't, really.

Big Bang Theory Saved
An apparent discrepancy in the Big Bang theory of the universe's evolution has been reconciled by astrophysicists examining the movement of gases in stars.

Professor John Lattanzio from Monash's School of Mathematical Sciences and Director of the Centre for Stellar and Planetary Astrophysics said the confusion surrounding the Big Bang revolved around the amount of the gas Helium 3 in the universe.

The issue arises from what is actually one of the greatest successes of the big bang theory – quantitative calculations of the relative abundances of a few light element produced within the first 5-10 minutes of the universe by the process of "big bang" nucleosynthesis.

Detailed calculations depend on vaious factors, such as the temperature and rate of expansion of the universe during the time in question, as well as the densities and relative abundances of the "raw materials" (mostly protons, neutrons, photons, and neutrinos) when nucleosynthesis begins. The calculations are complex due to the dependence on so many factors, but they're no real sweat with modern computers. Even before modern computers, the first physicists to make the computations (George Gamow and associates) in the late 1940s were able to come up with surprisingly good results, all things considered. (They predicted a mass fraction of about 50% helium-4, when the correct figure is more like 25%.)

The objective is to compute the abundances of the light elements deuterium (hydrogen-2), helium-3, helium-4, lithium-6, and lithium-7 (relative to protons – ordinary hydrogen). In order to check the correctness of the calculations, the numbers have to be compared with actual measurements of the relative abundances of these elements, either at the present time, or at some known time in the past.

And that's where the difficulties lie. In the first place, it's necessary to be sure the relative abundances can be measured accurately. This is nontrivial, since, in the most extreme case, the predicted abundance of lithium-7 is a minuscule mass ratio on the order of 10-10. (Lithium-6 is an even smaller ratio, too small to measure.)

The second problem is that there's no way to observe the relative abundances right after nucleosynthesis is complete. At best, the measurement could be made a billion years or so after the big bang. And in practice, the best measurements are made on nearby objects, corresponding to more than 13 billion years after the big bang. So you have to make allowances for any changes that could have occurred in that time span, due to incremental production or destruction of isotopes (in stars, for example).

The most problematic case has been with helium-3. Until the research just reported, there has been much less helium-3 detected than should be expected, because this isotope can be produced in low mass star like our sun. But the discrepancy can now be accounted for, since this helium-3 should be destroyed near the end of a star's life:
Near the end of a star's life there is a 'core flash' and it was at around this time that the computer models revealed a small instability in the movement of the gases in the star. "When we looked at this in 3D we found this hydrodynamic instability caused mixing and destroyed the helium 3 so that none was released into space," Professor Lattanzio said.


Additional information:

Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis – original research report in Science (subscription rqd for full access)

On the case of the "missing" helium – PhysicsWeb

Scientists crack open stellar evolution – Lawrence Livermore National Laboratory

Nucleosynthesis


Tags: , ,
Read More >>