At first I noticed a very lush tree. Looks full and healthy.
Then I noticed a bald spot. Sometimes tree have some dead branches. No big deal.
This tree looked fine, but most of the branches are dead.
I did my civic duty and removed his carcass from the street to prevent any unpleasant meetings by the neighbors or other potential road kill victims who might want to check out the scene.
I put the carcass in my compost bin.About 8% of breast cancer cases are caused by mutations in tumor suppressor genes, such as breast cancer associated gene-1 (BRCA1). BRCA1 is the most frequently mutated tumor suppressor gene found in inherited breast cancers and BRCA1 mutation carriers have a 50-80% risk of developing breast cancer by age 70. "Although work with animal models of BRCA1 mutation has provided some insight into the many biological processes linked with BRCA1, very little is known about the downstream mediators of BRCA1 function in tumor suppression," says lead study author Dr. Chu-Xia Deng from the Genetics of Development and Diseases Branch at the National Institutes of Health.
Dr. Deng and colleagues were interested in investigating the relationship among BRCA1, SIRT1 and Survivin. SIRT1 is a protein and histone deacetylase involved in numerous critical cell processes including metabolism, DNA repair and programmed cell death, known as apoptosis. Although SIRT1 has been implicated in tumorigenesis, no concrete role in cancer initiation or progression has been identified. Survivin is an apoptosis inhibitor that is dramatically elevated in many types of tumors. Research has suggested that Survivin may serve to maintain the tumor and promote growth.
The researchers found that BRCA1 functioned as a tumor suppressor by maintaining SIRT1 expression, which in turn inhibited Survivin expression. When BRCA1 was not functioning properly, SIRT levels decreased and Survivin levels increased, allowing BRCA1-deficient cells to overcome apoptosis and undergo malignant transformation.
They went on to show that the compound resveratrol strongly inhibited BRCA1-mutant tumor growth in cultured cells and animal models. ... In the current paper, resveratrol enhanced SIRT1 activity, this leading to reduced Survivin expression and subsequent apoptosis of BRCA1 deficient cancer cells.
These results were surprising in light of previous reports showing that high levels of SIRT1 enhance growth of other types of tumors. It now appears that SIRT1 can enhance or inhibit tumor growth — it all depends on the context, says Deng. ...
The researchers also found that a red wine chemical called resveratrol, recently touted as a powerful antiaging compound, was effective in combating BRCA1-associated tumor formation specifically.
How resveratrol is able to do this is unclear. “The work in this case is that SIRT1 has an antitumor effect, and this paper provides mechanistic insights into that,” comments Pere Puigserver, a Harvard biologist who studies SIRT1. But the resveratrol data should be taken with caution, he notes. While this new research clearly shows the direct relationship between BRCA1 and SIRT1, the direct link between resveratrol and SIRT1 is more difficult to demonstrate.
Nonetheless, molecular details of BRCA1-related breast cancer are emerging, and this new data places SIRT1 squarely inside the complex web of molecules that impact tumor growth.
Scottish scientists have discovered how to control a major anti-tumour gene that could lead to more effective chemotherapy. According to a report in the Cancer Cell Journal, research conducted by the Universities of St Andrews and Dundee may eventually lead to the development of new cancer drugs.
The gene, called p53 and known as "the guardian of the genome", is damaged or switched off in most cancers. But the resrchers found that they could reboot it using two new biological compounds called "tenovins".
In a laboratory study, the academics found that these compounds could kick-start p53 by turning off enzymes called sirtuins. Sirtuins act like genetic switches and keep p53 under control, ensuring that the cells stay alive.
In a groundbreaking study led by a molecular biologist at Florida State University, researchers have discovered that as embryonic stem cells turn into different cell types, there are dramatic corresponding changes to the order in which DNA is replicated and reorganized.
The findings bridge a critical knowledge gap for stem cell biologists, enabling them to better understand the enormously complex process by which DNA is repackaged during differentiation -- when embryonic stem cells, jacks of all cellular trades, lose their anything-goes attitude and become masters of specialized functions. ...
"Understanding how replication works during embryonic stem cell differentiation gives us a molecular handle on how information is packaged in different types of cells in manners characteristic to each cell type," said David M. Gilbert, the study's principal investigator. "That handle will help us reverse the process in order to engineer different types of cells for use in disease therapies."
"We know that all the information (DNA) required to take on the identity of any tissue type is present in every cell.... We must learn how cells lose pluripotency in the first place so we can do a better job of reversing the process without risks to patients.
"The challenge is, adult cells are highly specialized and over the course of their family history over many generations they've made decisions to be certain cell types rather than others," he said. "In doing so, they have tucked away the information they no longer need on how to become other cell types. Hence, all cells contain the same genetic information in their DNA, but during differentiation they package it with proteins into 'chromatin' in characteristic ways that define each cell type. The rules that determine how cells package DNA are complicated and have been difficult for scientists to decipher."
But, Gilbert noted, one time that the cell "shows its cards" is during DNA replication.
"During this process, which was the focus of our FSU research, it's not just the DNA that replicates," he said. "All the packaging must be replicated as well in each cell division cycle."
He explained that embryonic stem cells have many more, smaller "domains" of organization than differentiated cells, and it is during differentiation that they consolidate information.
"In fact, 'domain consolidation' is what we call the novel concept we discovered," he said.
Author Summary
Microscopy studies have suggested that chromosomal DNA is composed of multiple, megabase-sized segments, each replicated at different times during S-phase of the cell cycle. However, a molecular definition of these coordinately replicated sequences and the stability of the boundaries between them has not been established. We constructed genome-wide replication-timing maps in mouse embryonic stem cells, identifying multimegabase coordinately replicated chromosome segments—“replication domains”—separated by remarkably distinct temporal boundaries. These domain boundaries were shared between several unrelated embryonic stem cell lines, including somatic cells reprogrammed to pluripotency (so-called induced pluripotent stem cells). However, upon differentiation to neural precursor cells, domains encompassing approximately 20% of the genome changed their replication timing, temporally consolidating into fewer, larger replication domains that were conserved between different neural precursor cell lines. Domains that changed replication timing showed a unique sequence composition, a strongly biased directionality for changes in resident gene expression, and altered radial positioning within the three-dimensional space in the cell nucleus, suggesting that changes in replication timing are related to the reorganization of higher-order chromosome structure and function during differentiation. Moreover, the property of smaller discordantly replicating domains may define a novel characteristic of pluripotency.
#3
Grasshopper - species and status unknown.
Brown bat - exact species unknown (didn't have time to ID), but it is Native. I have a great story to tell about this photo.
This is the "projector" that needs replacing. It 'projects' images of space onto the domed Sky Theater. Now I went through some trouble to get this shot. The Sky Theater is a show and extra feature in addition to regular admission $10 for adults and they offer no student discounts. I entered the theater, without a ticket as paid patrons were entering. The staff were hawking me as I explained that I just want a photo of the Zeiss, the much debated projector. They watched suspiciously as I flashed photos and seemed relieved when I dashed out of the theater.
That was my Urban Science Adventure, endured to deliver facts to you.
Have a great weekend.
I’m piggy backing off of Villager’s Manic Monday Meme: Moon. Each Manic Monday introduces a new theme for bloggers to explore in any way they see fit. Villager always takes the time to connect the meme theme to African-American Culture. Today, he introduced his readers to African-American Astronauts of NASA.
NASA is celebrating 50 years of research, innovation, education, and exploration. I had a great time and learned alot. Science Agencies and Science Museums like the Adler work together to share science with everyone. I applaud the efforts and variety of ways scientists and educators work together to help the general public understand what NASA and Scientists do and how everyone benefits from their work. Moreover, these Outreach Programs introduce audiences to career tracks that may often be overlooked by school counselors. NASA is the pioneer of science outreach. They do a hefty amount of outreach and education to students (K-12)and their teachers and to college students. How else do we get new astronauts if they don't study and go to college?